\(\int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x)) \sqrt {\sec (c+d x)}} \, dx\) [570]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [F(-1)]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 33, antiderivative size = 149 \[ \int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x)) \sqrt {\sec (c+d x)}} \, dx=\frac {2 B \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{b d}+\frac {2 (A b-a B) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{b^2 d}-\frac {2 a (A b-a B) \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{b^2 (a+b) d} \]

[Out]

2*B*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec
(d*x+c)^(1/2)/b/d+2*(A*b-B*a)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(
1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/b^2/d-2*a*(A*b-B*a)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*El
lipticPi(sin(1/2*d*x+1/2*c),2*b/(a+b),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/b^2/(a+b)/d

Rubi [A] (verified)

Time = 0.41 (sec) , antiderivative size = 149, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.242, Rules used = {3039, 4123, 3856, 2719, 3933, 2882, 2720, 2884} \[ \int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x)) \sqrt {\sec (c+d x)}} \, dx=\frac {2 (A b-a B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{b^2 d}-\frac {2 a (A b-a B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{b^2 d (a+b)}+\frac {2 B \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b d} \]

[In]

Int[(A + B*Cos[c + d*x])/((a + b*Cos[c + d*x])*Sqrt[Sec[c + d*x]]),x]

[Out]

(2*B*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(b*d) + (2*(A*b - a*B)*Sqrt[Cos[c + d*x]
]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(b^2*d) - (2*a*(A*b - a*B)*Sqrt[Cos[c + d*x]]*EllipticPi[(2*b)
/(a + b), (c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(b^2*(a + b)*d)

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2882

Int[Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]/((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[d/b
, Int[1/Sqrt[c + d*Sin[e + f*x]], x], x] + Dist[(b*c - a*d)/b, Int[1/((a + b*Sin[e + f*x])*Sqrt[c + d*Sin[e +
f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 3039

Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[g^(m + n), Int[(g*Csc[e + f*x])^(p - m - n)*(b + a*Csc[e + f*x])^m*(
d + c*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[p] && I
ntegerQ[m] && IntegerQ[n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3933

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[Sqrt[d*Sin[e
 + f*x]]*(Sqrt[d*Csc[e + f*x]]/d), Int[Sqrt[d*Sin[e + f*x]]/(b + a*Sin[e + f*x]), x], x] /; FreeQ[{a, b, d, e,
 f}, x] && NeQ[a^2 - b^2, 0]

Rule 4123

Int[((csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/(csc[(e_.) + (f_.)*(x_)]*(b_
.) + (a_)), x_Symbol] :> Dist[A/a, Int[(d*Csc[e + f*x])^n, x], x] - Dist[(A*b - a*B)/(a*d), Int[(d*Csc[e + f*x
])^(n + 1)/(a + b*Csc[e + f*x]), x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2
- b^2, 0]

Rubi steps \begin{align*} \text {integral}& = \int \frac {B+A \sec (c+d x)}{\sqrt {\sec (c+d x)} (b+a \sec (c+d x))} \, dx \\ & = \frac {B \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx}{b}-\frac {(-A b+a B) \int \frac {\sqrt {\sec (c+d x)}}{b+a \sec (c+d x)} \, dx}{b} \\ & = \frac {\left (B \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{b}-\frac {\left ((-A b+a B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\cos (c+d x)}}{a+b \cos (c+d x)} \, dx}{b} \\ & = \frac {2 B \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{b d}-\frac {\left ((-A b+a B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{b^2}+\frac {\left (a (-A b+a B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{b^2} \\ & = \frac {2 B \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{b d}+\frac {2 (A b-a B) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{b^2 d}-\frac {2 a (A b-a B) \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{b^2 (a+b) d} \\ \end{align*}

Mathematica [A] (verified)

Time = 19.91 (sec) , antiderivative size = 220, normalized size of antiderivative = 1.48 \[ \int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x)) \sqrt {\sec (c+d x)}} \, dx=\frac {\cot (c+d x) \left (-b B \sec ^{\frac {3}{2}}(c+d x)-b B \cos (2 (c+d x)) \sec ^{\frac {3}{2}}(c+d x)+b B \sec ^{\frac {7}{2}}(c+d x)+b B \cos (2 (c+d x)) \sec ^{\frac {7}{2}}(c+d x)-2 b B E\left (\left .\arcsin \left (\sqrt {\sec (c+d x)}\right )\right |-1\right ) \sqrt {-\tan ^2(c+d x)}+2 b B \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\sec (c+d x)}\right ),-1\right ) \sqrt {-\tan ^2(c+d x)}+2 A b \operatorname {EllipticPi}\left (-\frac {a}{b},\arcsin \left (\sqrt {\sec (c+d x)}\right ),-1\right ) \sqrt {-\tan ^2(c+d x)}-2 a B \operatorname {EllipticPi}\left (-\frac {a}{b},\arcsin \left (\sqrt {\sec (c+d x)}\right ),-1\right ) \sqrt {-\tan ^2(c+d x)}\right )}{b^2 d} \]

[In]

Integrate[(A + B*Cos[c + d*x])/((a + b*Cos[c + d*x])*Sqrt[Sec[c + d*x]]),x]

[Out]

(Cot[c + d*x]*(-(b*B*Sec[c + d*x]^(3/2)) - b*B*Cos[2*(c + d*x)]*Sec[c + d*x]^(3/2) + b*B*Sec[c + d*x]^(7/2) +
b*B*Cos[2*(c + d*x)]*Sec[c + d*x]^(7/2) - 2*b*B*EllipticE[ArcSin[Sqrt[Sec[c + d*x]]], -1]*Sqrt[-Tan[c + d*x]^2
] + 2*b*B*EllipticF[ArcSin[Sqrt[Sec[c + d*x]]], -1]*Sqrt[-Tan[c + d*x]^2] + 2*A*b*EllipticPi[-(a/b), ArcSin[Sq
rt[Sec[c + d*x]]], -1]*Sqrt[-Tan[c + d*x]^2] - 2*a*B*EllipticPi[-(a/b), ArcSin[Sqrt[Sec[c + d*x]]], -1]*Sqrt[-
Tan[c + d*x]^2]))/(b^2*d)

Maple [A] (verified)

Time = 5.42 (sec) , antiderivative size = 295, normalized size of antiderivative = 1.98

method result size
default \(-\frac {2 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \left (A F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a b -A F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) b^{2}-A \Pi \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), -\frac {2 b}{a -b}, \sqrt {2}\right ) a b -B F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a^{2}+B F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a b -B E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a b +B E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) b^{2}+B \Pi \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), -\frac {2 b}{a -b}, \sqrt {2}\right ) a^{2}\right )}{b^{2} \left (a -b \right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(295\)

[In]

int((A+B*cos(d*x+c))/(a+cos(d*x+c)*b)/sec(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)
^2+1)^(1/2)*(A*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*a*b-A*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*b^2-A*Ellipti
cPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))*a*b-B*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*a^2+B*EllipticF(cos(1/2
*d*x+1/2*c),2^(1/2))*a*b-B*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a*b+B*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*b
^2+B*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))*a^2)/b^2/(a-b)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2
*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x)) \sqrt {\sec (c+d x)}} \, dx=\text {Timed out} \]

[In]

integrate((A+B*cos(d*x+c))/(a+b*cos(d*x+c))/sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

Timed out

Sympy [F]

\[ \int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x)) \sqrt {\sec (c+d x)}} \, dx=\int \frac {A + B \cos {\left (c + d x \right )}}{\left (a + b \cos {\left (c + d x \right )}\right ) \sqrt {\sec {\left (c + d x \right )}}}\, dx \]

[In]

integrate((A+B*cos(d*x+c))/(a+b*cos(d*x+c))/sec(d*x+c)**(1/2),x)

[Out]

Integral((A + B*cos(c + d*x))/((a + b*cos(c + d*x))*sqrt(sec(c + d*x))), x)

Maxima [F]

\[ \int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x)) \sqrt {\sec (c+d x)}} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{{\left (b \cos \left (d x + c\right ) + a\right )} \sqrt {\sec \left (d x + c\right )}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c))/(a+b*cos(d*x+c))/sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)/((b*cos(d*x + c) + a)*sqrt(sec(d*x + c))), x)

Giac [F]

\[ \int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x)) \sqrt {\sec (c+d x)}} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{{\left (b \cos \left (d x + c\right ) + a\right )} \sqrt {\sec \left (d x + c\right )}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c))/(a+b*cos(d*x+c))/sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)/((b*cos(d*x + c) + a)*sqrt(sec(d*x + c))), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)}{(a+b \cos (c+d x)) \sqrt {\sec (c+d x)}} \, dx=\int \frac {A+B\,\cos \left (c+d\,x\right )}{\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,\left (a+b\,\cos \left (c+d\,x\right )\right )} \,d x \]

[In]

int((A + B*cos(c + d*x))/((1/cos(c + d*x))^(1/2)*(a + b*cos(c + d*x))),x)

[Out]

int((A + B*cos(c + d*x))/((1/cos(c + d*x))^(1/2)*(a + b*cos(c + d*x))), x)